الأزهر الشريف قطاع المعاهد الأزهرية

نموذج إجابة

لامتحان الشهادة الثانوية الأزهرية

للعام الدراسي

1331/73316-1107/07074

الدور الثاني

القسم: العلمي

مادة: الفيرياء (مترجم)

علما بأن النموذج استرشاديا

الصفحة ١ من ٥

نموذج إجابة مادة الفيزياء (مترجم) للشهادة الثانوية الأزهرية المردد ١٩ / ٢ ، ٢ ، ٢ (الدور الثاني) نموذج ()

		Question (1)			
No.		Answer		Mark	
(A)	1-	(b)		1	
	2-	(a)		1	
	3-	(c)		1	
	4-	(c)		1	
	5-	If $X_L > X_C$ [OR: the total voltage leads the current].		1	
	6-	If the coil's plane normal to the magnetic field.		1	
(B)	7-	If an external resistance double of the total resistance of the donnected to its ends.	levice	1	
	8-	If its wire is wound.		1	
	9-12	At the point (b): $I_1 + I_2 = I_3$ (1)	1 2		
		In the closed path (1): $4I_1 + 3I_2 = 12$ (2)	1		
(C)		In the closed path (2): $2I_2 + 3I_3 = 6$ (3)	1	4	
		By solving (1), (2) and (3) : $I_1 = \frac{21}{13} A$ $I_2 = \frac{3}{13} A$ $I_3 = \frac{24}{13} A$ $I_{3} = \frac{24}{13} A$	1 1 2		

الصفحة ٢ من ٥

نموذج إجابة مادة الفيزياء (مترجم) للشهادة الثانوية الأزهرية المردد ١٩ (١٠ / ٢ ، ٢ (الدور الثاني) نموذج ()

		Question (2)	
No.		Answer	
	1-	(a)	1
	2-	(c)	1
(A)	3-	(a)	1
	4-	(c)	1
(B)	5-6	1-Replacing the two metallic rings by a hollow metallic cylinder split into halves well isolated from each other. 2- Using many coils separated by small angles and the hollow metallic cylinder is pliting into a number of segments double the number of coils.	2
	7-8	 1- The core is made from siliconic soft iron. 2- The core is made of thin insulated sheets. [OR: wires of the two coils made from metallic wires of least ohmic resistance]. 	2
(C)	9-10	$\therefore B = \frac{\mu IN}{2r} \therefore B = \frac{4\pi \times 10^{-7} \times 5 \times 10}{0.2} \therefore B = \pi \times 10^{-4} T = 3.14 \times 10^{-4} T$	2
(C)	11-12	$\therefore \mathbb{R}_{m} = \frac{V - V_{g}}{\mathcal{I}_{g}} \therefore \mathbb{R}_{m} = \frac{20 - (0.1 \times 10^{-3})}{10^{-3}} \therefore \mathbb{R}_{m} = 199999 \cdot 9\Omega$	2

الصفحة ٣ من ٥

نموذج إجابة مادة الفيزياء (مترجم) للشهادة الثانوية الأزهرية المردم الثاني) نموذج ()

		Question (3)	
No. Answer		Answer	Mark
(A)	1-	(c)	1
	2-	(c)	1
	3-	(c)	1
	4-	(b)	1
	5-	It means that the direct current intensity that generates the same electric power as that generated by AC current in the same resistance $= 20 \text{ A}$	1
	6-	It means that the total work done inside and outside the cell to transfer an electric charge of 1C in its electric circuit = 12J OR: It means that the potential difference across poles of the cell in case of no current in its circuit (switch is opened) = 12 V	1
(B)	7-	It means that the electric charge on one plate of the capacitors which produced a potential difference between the two plates of $1v = 10^{-6} \text{ C}$ OR: It means that the ratio between the electric charge on one of the two plates of the capacitor to the potential difference between them = 10^{-6} C/V	1
i i	8=	It means that the minimum energy needed to liberate an electron from the metalsurface without gaining kinetic energy = 8×10^{-19} J	1
(6)	9-10		2
(C)	11-12	$\therefore \text{ emf} = -L \frac{\Delta I}{\Delta t}$ $\therefore \text{ emf} = -0.2 \times \frac{(1-0)}{0.1} \therefore \text{ emf} = 2 \text{ V}$	2

الصفحة ٤ من ٥

نموذج إجابة مادة الفيزياء (مترجم) للشهادة الثانوية الأزهرية المردم () الدور الثاني) نموذج ()

		Question (4)	
No.		Answer	
	1.	(a)	1
(A)	2-	(c)	1
	3-	(c)	1
	4-	(c)	1
*	5-	Plank's Constant (h)	1
	6-	<u>Q</u> A	1
(B)	7-8	When a beam of photons of energy (hv) falls on a surface at rate of (\emptyset_L) (photon/sec), then reflects. - Each photon suffering a change in its linear momentum = 2mc - The rate of the change of the linear momentum oh photon bean = $2 \text{ mc } \emptyset_L = 2 \text{ hv/c } \emptyset_L = 2 \text{mc} \emptyset_L$ Which equals the force applied by photons beam on the surface $\therefore F = 2 \left(\frac{hv}{c}\right) \emptyset_L \therefore F = \frac{2P_w}{c}$ ($P_w = hv\emptyset_L$)	2
(C)	9-10	$P_{L} \text{ mc} = \frac{hv}{c}$.: $P_{L} = \frac{3.2 \times 10^{-19}}{3 \times 10^{8}}$.: $P_{L} = 1.066 \times 10^{-27} \text{ kg. m/s.}$	2
	11-12	$\therefore \mathbb{F} = \frac{\mu I_1 I_2 \ell}{2\pi d} \therefore \mathbb{F} = \frac{4\pi \times 10^{-7} \times 20 \times 10 \times 1}{2\pi \times 0.1} \therefore \mathbb{F} = 4 \times 10^{-4} \mathbb{N}$	2

الصفحة و من و

نموذج إجابة مادة الفيزياء (مترجم) للشهادة الثانوية الأزهرية المردم ١٩ ٢٠ ٢ ، ٢ ، ٢ (الدور الثاني) نموذج ()

		Question (5)	
No).	Answer	Mark
	1-	Decreases	1
(0)	2-	Increases	1
(A)	3-	Decreases	1
	4-	Decreases	1
	5-	It protects the galvanometer from being damaged. OR: It increases the measuring range of the galvanometer. OR: It makes the resistance of the whale device becomes very small so that the measures current doesn't affect.	1
(B)	6-	Dynamo Poles.	1
	7-	Control the circuit frequency to resonate with the supply frequency.	1
	8-	It continuously pulling the hot wire.	1
		- Across the coil ends.	1
	9-10	- Because it has an impedance $Z_L = \sqrt{R^2 + X_L^2} > R$	1
(C)		- When connected to the D.C source.	1
	11-12	- Because the case of AC source the effective value of the AC current is less than $20A$. [$I_{eff} = \frac{I_{max}}{\sqrt{2}} = \frac{20}{R} = 14.14A < 20A$]	1