الأزهر الشريف قطاع المعاهد الأزهرية

نموذج رقم (۱)

نموذج إجابة

لامتحان الشهادة الثانوية الأزهرية

للعام الدراسي

1331/73316-11.7/.7.79

الدور الثاني

القسم: العلمي

مادة: الكيمياء مترجم

علما بأن النموذج استرشاديا

الصفحة ١ من ٥

الشهادة الثانوية الأزهرية ١٩ ، ٢ ، ٢ ، ٢ (الدور الثاني)

		Question (1)			
*	NO	Answer		Mark	
(A)	1-	(d)			
	2-	(b)		1	
	3-	(a)			
	4-	(d)			
	5-	(c)			
(B)	First:	1) emf = oxidation potential of K + reduction potential = 2.924 + 1.36 = 4.284 V 2) Cell daigram 2K / 2K ⁺ // Cl ₂ / 2Cl ⁻	l of Cl ₂	1	
	Second:	1) $3\text{Fe} + 8\text{H}_2\text{SO}_4 \xrightarrow{\text{Conc.}} \text{FeSO}_4 + \text{Fe}_2 (\text{SO}_4)_3 + 8\text{H}_2\text{O} + 4\text{SO}_4$ 2) $\text{Fe}_3 \text{ O}_4 + 4\text{H}_2 \text{ SO}_4 \xrightarrow{\text{Conc.}} \text{FeSO}_4 + \text{Fe}_2 (\text{SO}_4)_3 + 4\text{H}_2\text{O}$			
(C)	1-	$FeCO_3 \xrightarrow{\Delta} FeO + CO_2$ $FeO + H_2SO_4 \xrightarrow{dil} FeSO_4 + H_2O$	(½) (½)	1	
	2-	$2CH_4 \xrightarrow{1500^{\circ}C} C_2H_2 + 3H_2$ $C_2H_2 + Br_2 \longrightarrow C_2H_2 Br_2$	(½) (½)	1	
	3-	$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$ $CH_4 \xrightarrow{1000^{\circ}C} C + 2H_2$	(½) (½)	1	

الصفحة ٢ من ٥

الشهادة الثانوية الأزهرية ١٩٠١/٢٠١ (الدور الثاني)

		Question (2)		
8	NO	Answer	Mark	
(A)	1-	Magnesium	1	
	2-	Substitutional allyos	1	
	3-	Catalyst	1	
	4-	Molecular formula	1	
	5-	Quantitative analysis	1	
(B)		Equivalent weight of $Cu = \frac{63.5}{2} = 31.75 \text{ gm}$ Quantity of electricity = $5 \times 193 = 965$ coulomb $96500 \text{ C} \longrightarrow 31.75 \text{ gm}$ $965 \text{ C} \longrightarrow \times \text{ gm}$ Mass of Cu in first cell = $\frac{965 \times 31.75}{96500} = 0.3175 \text{ gm}$ Mass of Cu in second cell = $\frac{9650 \times 31.75}{96500} = 3.175 \text{ gm}$ Mass on Cu in third cell = $\frac{0.5 \times 31.75}{1} = 15.875 \text{ gm}$ Conclusion: the mass of deposited material increasing with increasing the quantity of electricity and this reslut verify Faraday's first law.		
(C)	1-	A galvanic cell is formed in which iron becomes more active metal the "anode", while tin becomes less active metal the "cathode" so iron corroded.	1	
	2-	Mg + 2HCl \longrightarrow MgCl ₂ + H ₂ \uparrow Due to H ₂ gas was evolved, the products do not react with each other.	1	
	3-	Due to the formation of a thin layer of oxide which protect the metal from further reaction.	. 1	

الصفحة ٣ من ٥

الشهادة الثانوية الأزهرية ١٩ ، ٢ ، ٢ ، ٢ (الدور الثاني)

		Question (3)	
	NO	Answer	Mark
(A)	1-	(√)	1
	2-	(X) (½) Correction: 2 mole or Fe ³⁺ (½)	1
	3-	(√)	1
	4-	(√)	1
	5-	(X) (½) Correction: leads to stopping the oxidation and reduction reaction (or) stopping the flow of electric current in the external wire. (½)	1
(B)	1-	$(COO)_2 \text{ Fe } \xrightarrow{\Delta} \text{FeO} + CO_2 + CO$	1
	2-	$C_8 H_{18} \xrightarrow{\Delta. P} C_4 H_8 + C_4 H_{10}$	1
	3-	$2\text{PbSO}_{4(s)} + 2\text{H}_2\text{O}_{(\ell)} \xrightarrow{\text{charge}} \text{Pb}_{(s)} + \text{PbO}_{2(s)} + 4\text{H}_{(aq)}^+ + 2\text{SO}_{4(aq)}^{2-}$	1
	4-	$NH_4 Cl_{(s)} + H_2O_{(\ell)} $ \Longrightarrow $H_{(aq)}^+ + Cl_{(aq)} + NH_4OH_{(aq)}$	1
·		$2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O$	
(C)		$\frac{M_a V_a}{n_a} = \frac{M_b V_b}{n_b}$ $M_b = \frac{0.2 \times 10 \times 2}{20} = 0.2M$	3
		KOH mass = $56 \times 0.4 \times 0.2 = 4.48$ gm	
		$\% \text{ of KOH} = \frac{4.48 \times 100}{5.6} = 80 \%$	

الصفحة ٤ من ٥

الشهادة الثانوية الأزهرية ١٩٠١/٢٠١ (الدور الثاني)

			Question (4)		
	NO		Answer	Mark	
(A)	1-	Сус	Cyclic unsaturated		
	2-	Neu	Neutral		
	3-	opposite			
	4-	Bau	Bauxite		
	5-	red		1	
0	first	1-	Stablished the law of mass action or founded a law expessing the relationship between velocity of the chemical reaction and concentration of the reactants.	1	
		2-	A reaction of alkenes with KMnO ₄ in alkaline medium to detect the double bond.	1	
(B)	Second	1-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
		2-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
(C)	1-	Indicator of the first analytical group (dil. HCl) (½) Indicator of the fifth analytical group (Ammonium Carbonate Soln) (½)			
	2-		Steel (interstitial alloy) (½) Cementite (inter - metalic alloy) (½)		
	3-	Organic compounds (mainly contain Carbons atoms) (½) Inorganic compounds (may contain carbon atoms in addition to other elements) (½)			

الصفحة ٥ من ٥

الشهادة الثانوية الأزهرية ١٩٠١،٢٠١ (الدور الثاني)

			Question (5)	
	NO	Answer		
(A)	1-	The maximum water vapour pressure in air at a certain temperature.		1
	2-	A process in which all unionized molecules are changed into ions.		1
	3-	Measuring concentration of acid or base using base or acid knowing their concentration of and volume.		
	4-	This is the kind of electric cells which we can obtain electric current as a result of spontaneous oxidation - reduction reaction.		
	5-	Condensation takes place between two different monomers and accompanied by losing a simple molecule such as water.		1
(B)	first	1-	Fecl ₃ with ammonium thiocyanate give blood red colour (iron III thiocyanate) (½) Fecl ₃ with ammonium hydroxide give browon reddish red ppt. (½)	1
		2-	Ag NO ₃ with sodium ioded gives yellow ppt. insoluble in ammonia solution. $(\frac{1}{2})$ AgNO ₃ with sodium phosphate gives a yellow ppt. soluble in ammonia solution. $(\frac{1}{2})$	1
	Second		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
(C)		Kc =	$= \frac{[No_2]^2}{[N_2][O_2]^2}$ $= \frac{(0.2)^2}{(0.4)(0.2)^2} = 2.5$	3